AG are one of the largest suppliers of hard landscaping, building products and structural precast in the UK and Ireland — but staying as a tightly-run family business, with a well-trained and highly-skilled workforce, has allowed us to maintain a firm focus on product innovation and a responsive, customer-driven service.

Everyone within our organisation shares a common focus: to develop products and solutions for a built environment that are both aesthetically pleasing and highly functional. With a proud history of market and manufacturing firsts, our engineering, design and sales teams work in close partnership with architects, designers and contractors to develop products that continue to challenge and lead industry standards.
CONTENTS

1. INTRODUCTION
Intro to Segmental Retaining Walls 04

2. SEGMENTAL RETAINING WALL RANGES
Anchor Vertica® 10
Anchor Landmark® 18
Anchor Diamond® 26
Anchor Bayfield® 34

3. DESIGN INFORMATION + ADVICE
Wall Types 44
Gravity Walls 47
Corner Details 50
Curve Details 53
Handrails + Barriers 56
Small Wall Inspiration 58

4. TECHNICAL INFORMATION
Maintenance Guidance 62
The Environment 63
Design + Specification Services 64
AG ANCHOR RETAINING WALLS

The best system for the best solution

When designing and specifying a retaining wall, there are many solutions available to engineers — such as cast in-situ, gabion, stone, gravity walls and hybrid systems. While these can all be made to work well, each option comes with challenges — some are time-consuming to build and some are difficult to engineer safely. Some types can only be built with a reverse angle, while others are expensive to implement. Many solutions also lack the aesthetic finesse that architects and landscaping designers require.

AG manufacture and supply segmental retaining walls as we believe, simply, that these offer the best solution for engineers. And amongst the many ranges of segmental retaining walls available today, AG's Anchor system offers what we feel is by far the best-engineered option — providing a range of safe, flexible, cost-effective solutions that let construction professionals produce superior walls not just quickly, but also beautifully, within any project. AG have produced Anchor systems for 1,000s of walls, big and small, throughout the UK and Ireland — which means we have the experience and knowledge to help.

THE ADVANTAGES

AG segmental retaining walls versus other types of walls

They're cost effective and simple to build
Segmental retaining walls are generally the most cost-effective solution as they usually require less complex engineering. So no concrete footings, steel fixers, shuttering or special backfill — and a reduced need for scaffolding. Labour and equipment costs tend to be lower too.

They're flexible
Curves and grade changes are easy to build in. Large heights are much easier to engineer because the geogrid built into the wall backfill stabilises the soil behind the wall. With the correct design and soil reinforcement, walls in excess of 40 feet can be accomplished.

They're durable
Segmental retaining walls, unlike many other types of wall, are tolerant to settlement and movement.

They're 'site contained'
Backfill material placed behind the retaining wall can often simply be the material excavated from the site itself. This saves expense, time and reduces CO₂ emissions caused by transporting large amounts of material to and from your site.

They're feature-friendly
The Anchor system makes curved walls as easy to build as straight walls — but it’s also easy to add steps, lights, seating and terraces where required in garden installations.

They're safer
Unlike many other alternatives, Anchor retaining wall systems cannot be climbed easily by children, making them the safer choice for public areas.
Introduction to Segmental Retaining Walls

AG Anchor segmental retaining wall systems

THE ADVANTAGES

AG segmental retaining walls versus other segmental retaining wall systems

Durability
AG Anchor segmental retaining wall blocks are manufactured from locally sourced, high grade aggregates using the latest computerised systems. Durability and performance is assured by meeting or exceeding targets for crushing strength and water absorption.

Design
Across the AG Anchor range, all our products are carefully designed to complement their environment - from Bayfield® in domestic gardens right through to large-scale commercial installations of Landmark® and Vertica®. The closed face design also ensures that rodent infestations are extremely unlikely.

Innovation
Products like our Landmark® system feature a unique mechanical connection between the blocks, PVC locking bar and the geogrid reinforcement, permitting extremely high loading conditions – providing suitability for all retaining wall applications from landscaping to heavy engineering.

Efficiency
All AG Anchor blocks use capping blocks that are shaped asymmetrically (tapered) – making capping straight or curved walls much more efficient as the shape of the capping piece minimises the need for cuts.

Environment
AG Anchor segmental retaining wall blocks are produced in the UK from locally sourced materials and manufactured with 100% harvested rain water and 100% renewable energy in the production process.

Global expertise
Anchor retaining wall systems are manufactured in Ireland by AG under license from Anchor Wall Systems. This combined expertise in block design, block manufacture and engineering design offers a unique and unchallengeable product range, quality and service available throughout the UK and Ireland.

What are BBA + HAPAS?

What is BBA certification?
BBA is the British Board of Agrément, an organisation that tests, inspects and approves products, systems and installers within the construction industry. BBA’s certification and inspection services are recognised by building control, local authorities, industry insurers and the key construction trade associations in the UK.

What is HAPAS?
HAPAS is the Highway Authorities Performance Approval Scheme – a scheme administered by BBA in conjunction with the UK Highways Authorities and other industry bodies. It was established to provide a nationally recognised approval scheme for innovative products and systems used in highway works.

What is BBA + HAPAS?
BBA + HAPAS is the Highway Authorities Product Approval Scheme – a scheme administered by BBA in conjunction with the UK Highways Authorities and other industry bodies. It was established to provide a nationally recognised approval scheme for innovative products and systems used in highway works.

What is BBA certification?
BBA is the British Board of Agrément, an organisation that tests, inspects and approves products, systems and installers within the construction industry. BBA’s certification and inspection services are recognised by building control, local authorities, industry insurers and the key construction trade associations in the UK.

What is HAPAS?
HAPAS is the Highway Authorities Performance Approval Scheme – a scheme administered by BBA in conjunction with the UK Highways Authorities and other industry bodies. It was established to provide a nationally recognised approval scheme for innovative products and systems used in highway works.

What are the benefits of BBA certification?
BBA approval of both Anchor Landmark® and Anchor Vertica® systems was recently extended in June 2017 to full HAPAS certification.

How long have these systems been BBA certified?
The BBA approval of both Anchor Landmark® and Anchor Vertica® systems was recently extended in June 2017 to full HAPAS certification.

Standards + Performance
Anchor Vertica® and Landmark® HAPAS (BBA) certified retaining wall blocks have a minimum 28 day compressive strength of 40 N/mm² (unlike most competing masonry units which are manufactured to 10.5 N/mm²) and standard Vertica® which is manufactured to 24 N/mm². The certified block systems also satisfy the durability requirement of class XF2 in accordance with BS 8500-1:2015 – their high compressive strength and high cement content mean that they will not degrade due to the action of de-icing salts in the same way as units manufactured to 10.5 N/mm².

Design in accordance with BS 8006-1:2010, Annex B delivers a design life of 120 years – giving specifiers complete assurance that the block will meet the design life expectations for the development of Design Codes Highway Works structures.

Durability and performance is further assured by AG’s agreed BBA quality control procedure, which includes factory and testing audits and end user assessments. Further details can be obtained from our Technical Department.
Segmental Retaining Wall Ranges

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2</td>
<td>10</td>
<td>18</td>
<td>26</td>
<td>34</td>
</tr>
</tbody>
</table>
The Anchor Vertica® system is designed for steep, sloping hillside and other traditionally difficult installation areas— but the project applications for Anchor Vertica® are almost endless.

Vertica® walls can be built to virtually any height in incredibly tight spaces thanks to patented, built-in alignment locators and a near vertical rise resulting in less excavation and land loss. Typically used with geosynthetic reinforcement, Vertica® blocks meet or exceed industry standards for strength and durability. Please see page 46 for information on an Anchorplex® Vertica® installation.

Anchor Vertica® is available in 2°, 4° and 7° face angles, two finishes—straight or stonecut—and a variety of warm earth tone colours. It is also available for machine installation, which can make the installation process five to ten times faster. Visit professional.ag.uk.com/products/retaining-walls/anchor-vertica to see a video demonstration.
1. Anchor Vertica® Basalt, Dungannon
2. Anchor Vertica® Basalt, Craigavon Hospital
3. Anchor Vertica® Basalt, Wexford
4. Anchor Vertica® Canelletto, Wexford
5. Anchor Vertica® Basalt, Installation
6. Anchor Vertica® Basalt, Wexford
7. Anchor Vertica® Basalt, Derry/L'Derry
8. Anchor Vertica® Canelletto, Newtownabbey
Anchor Vertica®
Dry-build retaining walls with a near vertical appearance

COLOURS + FINISHES

BASEL

CASHEL

CANELLETTO

CORRIB

STRAIGHT CUT FINISH

STONE CUT FINISH

PROFILES

The stone face is naturally textured to give the wall a weathered appearance.

SHORT CUT CAP

CORNER BLOCK

CAP BLOCK

STONE CUT

STRAIGHT CUT
Vertica® standard
Vertica® Standard 24kN/m² blocks are suitable for any project not requiring Highways Authority approval.

STANDARDS + PERFORMANCE
Our segmental retaining wall products are regularly tested to record important physical characteristics and to comply with product specific performance criteria. The durability and performance of Anchor blocks is assessed by meeting or exceeding targets for compression strength and water absorption. If you need further assistance with this please consult our Technical Department.

Vertica® BBA approved
Vertica® BBA blocks meet the requirements of the Highways Authority as set out in the D.C.H.W. handbook.

STANDARDS + PERFORMANCE
The Anchor Vertica® BBA certified retaining wall block has a minimum 28 day compressive strength of 40M/ mm², and satisfies the durability requirement of class KF2 in accordance with BS 8500-1:2015. When designed in accordance with BS 8006-1:2010, Annex B, the design life of an Anchor Vertica® BBA wall is 120 years. Durability and performance of the Anchor Vertica® BBA retaining wall block is assured by AGL having agreed with the BBA a quality control procedure. Further details can be obtained from our Technical Department.

GRAVITY / ENGINEERED
Gravity (max 1.2m)
Engineered (above 1.2m)

Licence
Anchor blocks are manufactured under licence from Anchor Wall Systems.

FEATURES + BENEFITS
- A distinctive design allows taller wall construction in incredibly tight spaces. Use in developments or where space is at a premium.
- The 4º block has anti-climb benefits – designed with playgrounds in mind.
- The Stone Cut finish uses patented technology to create a “crunched” fresh, similar to natural stones.
- Variety of warm earth tone colours available and a natural textured finish.
- Mortarless and pinless – built with no mortar or concrete, the unique dry build locking system allows fast track construction in all weather. This minimises palaver installation rates than traditional block and brickwork.
- Features a patented locating lug that acts as a guide to ensure accurate alignment and precise set back every time.
- Suitable for all retaining walls – from low height landscaping to tall commercial walls.
- The capping block is shaped asymmetrically (tapered), making capping straight or curved walls much easier.
Anchor Landmark® is a HAPAS approved, positive mechanical connection retaining wall system that takes performance to new heights.

Suitable for high performance under extreme loading conditions, it’s designed with a unique locking connection between the block face and geogrid to offer unparalleled connection strength – so it’s suitable for even the most challenging projects.

The Anchor Landmark® system features a portrait-orientated ‘riven stone’ face of slightly varying depths to form a highly aesthetically pleasing retaining wall solution.

Built with no mortar or concrete, the unique dry-build locking system of Landmark® allows fast-track construction in all weathers, meaning quicker installation rates than traditional brick and blockwork.

For more information on the positive connection system, see page 46 for details.
Anchor Landmark®

High performance positive mechanical connection retaining wall

STOCK INFORMATION

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Length (mm)</th>
<th>Depth (mm)</th>
<th>Height (mm)</th>
<th>In Black</th>
<th>Available Colours</th>
<th>m² per pack</th>
<th>Units per pack</th>
<th>Unit Weight (kg)</th>
<th>Weight per 30 pack (t)</th>
<th>Packs per 8 wheeler</th>
<th>Packs per Unit Lorry</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULL HEIGHT BLOCK</td>
<td>200 ± 300</td>
<td>300 MTO</td>
<td>Basalt / Cashel / Canelletto</td>
<td>3.40</td>
<td>45</td>
<td>39</td>
<td>1.85</td>
<td>10</td>
<td>1.06</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>TAPERED FULL HEIGHT BLOCK</td>
<td>200 ± 300</td>
<td>300 MTO</td>
<td>Basalt / Cashel / Canelletto</td>
<td>3.40</td>
<td>45</td>
<td>39</td>
<td>1.85</td>
<td>10</td>
<td>1.06</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>HALF HEIGHT BLOCK</td>
<td>200 ± 300 / 300 MTO</td>
<td>Basalt / Cashel / Canelletto</td>
<td>1.97</td>
<td>36</td>
<td>23</td>
<td>0.68</td>
<td>16</td>
<td>0.33</td>
<td>16</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>FOUNDATION BLOCK</td>
<td>200 ± 300</td>
<td>300 MTO</td>
<td>Basalt / Cashel / Canelletto</td>
<td>N / A</td>
<td>48</td>
<td>22</td>
<td>1.04</td>
<td>10</td>
<td>0.69</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>SHORTCUT CAP</td>
<td>200 ± 300</td>
<td>300 MTO</td>
<td>Basalt / Cashel / Canelletto</td>
<td>N / A</td>
<td>120</td>
<td>19</td>
<td>1.28</td>
<td>10</td>
<td>1.06</td>
<td>16</td>
<td>24</td>
</tr>
</tbody>
</table>

MTO – All Landmark® colours are made to order (minimum quantity required). To give the desired appearance Anchor Landmark® has two different sized blocks. The depth at top and bottom of block varies due to the inclined split face. ‡ The ShortCut Cap short side is L 175mm.

INSTALLATION DATA

<table>
<thead>
<tr>
<th>Block Type</th>
<th>Set back / Face angle</th>
<th>Minimum inside radius on bottom course (mm)</th>
<th>Minimum inside radius on top course (mm)</th>
<th>Minimum on any wall (mm)</th>
<th>Maximum on any wall (mm)</th>
<th>Face geometry</th>
<th>packs / lorry</th>
<th>packs / unit lorry</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULL HEIGHT BLOCK</td>
<td>25mm (1")</td>
<td>2.93m</td>
<td>2.93m</td>
<td>2.93m</td>
<td>Straight cut</td>
<td>half</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>TAPERED FULL HEIGHT BLOCK</td>
<td>25mm (1")</td>
<td>2.93m</td>
<td>2.93m</td>
<td>2.93m</td>
<td>Straight cut</td>
<td>half</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>HALF HEIGHT BLOCK</td>
<td>19mm (1")</td>
<td>2.10m</td>
<td>2.10m</td>
<td>2.10m</td>
<td>Straight cut</td>
<td>half</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>FOUNDATION BLOCK</td>
<td>N / A</td>
<td>N / A</td>
<td>N / A</td>
<td>N / A</td>
<td>Straight cut</td>
<td>direct</td>
<td>28</td>
<td>16</td>
</tr>
<tr>
<td>SHORTCUT CAP</td>
<td>N / A</td>
<td>N / A</td>
<td>N / A</td>
<td>N / A</td>
<td>Split cut</td>
<td>direct</td>
<td>25</td>
<td>16</td>
</tr>
</tbody>
</table>

MANUFACTURING

Anchor segmental retaining wall blocks are manufactured from locally sourced, high grade aggregates. Using the latest computer controlled manufacturing process, each block is produced using a computer controlled manufacturing process. Our segmental retaining wall blocks are manufactured under licence from Anchor Wall Systems.

CERTIFICATION

Anchor Landmark® blocks are manufactured under licence from Anchor Wall Systems.

HAPAS + BBA

Anchor Landmark® blocks, PVC locking bar and the geogrid reinforcement permits the system allows fast-track construction in all weathers – that means quicker installation rates than traditional brick and blockwork.

The unique positive connection between the Anchor Landmark® blocks, PVC locking bar and the geogrid reinforcement permits extremely high loading conditions – Anchor Landmark® is therefore suitable for all retaining wall applications from landscape to heavy engineering.

HAPAS Roads + Bridges certified for use in conjunction with Enkagrid PRO geogrids.

The capping block is shaped asymmetrically (tapered), making capping straight or curved walls much easier. Installation of the capping block will be easier and quicker as the shape of the capping piece resembles the need for cuts.

STANDARDS + PERFORMANCE

Our segmental retaining wall products are regularly tested to record important physical characteristics and to comply with product specific performance criteria. The durability and performance of Anchor blocks is assured by meeting or exceeding targets for crushing strength and water absorption. If you need further assistance in this respect please consult our Technical Department.

GRAVITY / ENGINEERED

Engineered (above 1.2m)

ANCHOR LANDMARK®

LICENCE

Anchor blocks are manufactured under licence from Anchor Wall Systems.

FEATURES + BENEFITS

• Portrait orientated riven stone face of slightly varying depths.
• Built with no mortar or concrete, the unique dry-build locking system allows fast-track construction in all weathers – that means quicker installation rates than traditional brick and blockwork.
• The unique positive connection between the Anchor Landmark® blocks, PVC locking bar and the geogrid reinforcement permits extremely high loading conditions – Anchor Landmark® is therefore suitable for all retaining wall applications from landscape to heavy engineering.

SUSTAINABILITY

Energy Use

100% renewable.

Water Used

100% can water harvesting.

Recyclable

100% of this product can be recycled.

Manufacturing

Produced in the UK from locally sourced materials.

Non Primary materials

Waste Wood + Plastic: 100% recycled.

Carbon Footprint

8.3 Kg CO2 / m²

Carbon Reduction

8.3 Kg CO2 / m² - in accordance with the BREEAM Green Guide to Specification.
Each Anchor Diamond® block features a patented rear lip that acts as a guide to ensure accurate alignment and precise set back every time without the need for mortar. Combined with its mortarless and pinless design, this provides clear advantages: installation in almost all weathers and reduced labour costs. Anchor Diamond® 25 block can be built up to 0.9m high (Diamond® 30 up to 1.2m high) with no geogrid and up to 3m high with geogrid. Please see page 45 for information on an Anchorplex™ Diamond® installation.
Anchor Diamond®

1. Anchor Diamond® Basalt, Moneymore
2. Anchor Diamond® Canelletto, Enniskillen
3. Anchor Diamond® Cashel, Dungannon
4. Anchor Diamond® Basalt, Aughacloy
5. Anchor Diamond® Basalt, Larne
6. Anchor Diamond® Basalt, Selby
7. Anchor Diamond® Basalt, Selby
8. Anchor Diamond® Basalt, Moneymore
9. Anchor Diamond® Canelletto, Belper

Segmental Retaining Walls Specification Guide

Section 2
Retaining Walls
Anchor Diamond®
Projects
Anchor Diamond®
Dry-build retaining walls with a straight split face

COLOURS
- Basalt
- Casel
- Canelletto
- Corrib

PROFILES
The stone face is naturally textured to give the wall the appearance of natural cut stone.

SPECIFICATION REFERENCE: NBS PLUS
AG.35-44/350: Precast concrete interlocking blocks Dri. Crib walls, gabions and other gravity retaining walls – 310 DRYSTACK INTERLOCKING MASONRY
Anchor Diamond
Dry-build retaining walls with a straight split face

STANDARDS + PERFORMANCE
Our segmental retaining wall products are regularly tested to record important physical characteristics and to comply with product specific performance criteria. The durability and performance of Anchor blocks is ensured by meeting or exceeding targets for compression strength and water absorption. If you need further assistance in this respect please consult our Technical Department.

FEATURES + BENEFITS
• Built with no mortar or concrete, the unique dry-build locking system allows fast-track construction in all weathers — that means quicker installation rates than traditional brick and blockwork.
• Features a patented rear lip that acts as a guide to ensure accurate alignment and precise set back every time without the need for mortar.
• Mortarless and pinless (fast-track construction).
• Diamond® 25 can be built to 0.9m high while Diamond® 30 can be built up to 1.2m high with no geogrid.
• The capping block is shaped asymmetrically (tapered), making capping straight or curved walls much easier.
• Installation of the capping block will be easier and quicker as the shape of the capping piece minimises the need for cuts.

LICENCE
Anchor blocks are manufactured under licence from Anchor Wall Systems.

STOCK INFORMATION

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Length (mm)</th>
<th>Depth (mm)</th>
<th>Height (mm)</th>
<th>Available Colours</th>
<th>115.4 per pack</th>
<th>Units/liner per pack</th>
<th>Weight per pack (kg)</th>
<th>Pack(s) per pallet</th>
<th>Pallets per unit area</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 BLOCK</td>
<td>435</td>
<td>250</td>
<td>150</td>
<td>Basalt / Cashel / Canelletto / Corrib</td>
<td>3.5</td>
<td>54</td>
<td>25</td>
<td>1.24</td>
<td>10</td>
</tr>
<tr>
<td>30 BLOCK</td>
<td>435</td>
<td>300</td>
<td>150</td>
<td>Basalt / Cashel / Canelletto / Corrib</td>
<td>3.5</td>
<td>54</td>
<td>29</td>
<td>1.44</td>
<td>10</td>
</tr>
<tr>
<td>CORNER BLOCK</td>
<td>435</td>
<td>218</td>
<td>150</td>
<td>Basalt / Cashel / Canelletto / Corrib</td>
<td>N / A</td>
<td>4.6</td>
<td>29.5</td>
<td>1.44</td>
<td>10</td>
</tr>
<tr>
<td>SHORTCUT CAP</td>
<td>300</td>
<td>75</td>
<td>75</td>
<td>Basalt / Cashel / Canelletto / Corrib</td>
<td>N / A</td>
<td>120</td>
<td>19.3</td>
<td>1.235</td>
<td>10</td>
</tr>
</tbody>
</table>

* The ShortCut Cap ‘short side’ is 175mm in length. MTO – Made to order (minimum quantity required).

INSTALLATION DATA

<table>
<thead>
<tr>
<th>Blocks</th>
<th>Unit Body / Face angle</th>
<th>Minimum outside radius to back of block on bottom course (mm)</th>
<th>Minimum inside radius to back of block on bottom course (mm)</th>
<th>Tolerances on all dimensions (mm)</th>
<th>Compressive strength* (N/mm²)</th>
<th>Face finish</th>
<th>Face geometry</th>
<th>Units per m²</th>
<th>Cost per pack (t)</th>
<th>Packs per unit area</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 BLOCK</td>
<td>10.6°</td>
<td>2.4m</td>
<td>1.2m</td>
<td>±2mm</td>
<td>24 N/mm²</td>
<td>Straight cut</td>
<td>stretcher</td>
<td>15.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 BLOCK</td>
<td>10.6°</td>
<td>2.7m</td>
<td>0.9m</td>
<td>±2mm</td>
<td>24 N/mm²</td>
<td>Straight cut</td>
<td>stretcher</td>
<td>15.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER BLOCK</td>
<td>N / A</td>
<td>N / A</td>
<td>N / A</td>
<td>±2mm</td>
<td>N / A</td>
<td>Straight split</td>
<td>stretcher</td>
<td>N / A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHORTCUT CAP</td>
<td>N / A</td>
<td>N / A</td>
<td>N / A</td>
<td>±2mm</td>
<td>N / A</td>
<td>Straight split</td>
<td>stretcher</td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manufacturing
Anchor segmental retaining wall blocks are manufactured from locally sourced, high grade aggregates, using the latest computerised mixing systems to ensure colour and strength consistency. The weathered finish of the Diamond® range is produced using a computer-controlled manufacturing process. PDM: Made at our Fivemiletown production plant.

Certification
ISO 14001
Environmental Management.
ISO 9001
Quality Management.
OHSAS 18001
Occupational Health and Safety Management.
Download our Declaration of Performance (DoP) data at www.ag.uk.com/cemarking

Sustainability
Energy Use
100% renewable
Water Used
100% rain water harvesting
Recyclable
100% of this product can be recycled
Manufacturing
Produced in the UK from locally sourced materials
Non-Primary materials
Not greater than 70% non-primary
Waste Wood + Plastic
100% recycled
Carbon Footprint
55 – 65 Kg CO₂ / m²
Carbon Reduction
5 Kg CO₂ / m²
BREEAM
‘X’ Rating — in accordance with the BREEAM Green Guide to Specification.
With its rough hewn weathered texture, Anchor Bayfield® is an extremely versatile dry-build walling option. Bayfield® is available in four attractive standard palettes, with a distressed stone face providing a weathered, textured appearance akin to natural dry stone walling. It can be used to create attractive retaining walling up to 0.9m high using blocks alone, can be combined with geogrid reinforcement to build engineered walls up to 3m, or terraced to create the build shown in the photo opposite.

To add to the speed and convenience of dry-build, Bayfield® features a patented rear lip that acts as a guide to ensure accurate alignment and precise set-back every time.
Anchor Bayfield®
Dry-build retaining walls with a distressed stone finish

COLOURS

- BASALT
- CASHEL
- CANELLETTO
- CORRIB

PROFILES

The stone face is distressed to give the wall a weathered, textured appearance akin to natural dry stone walling.

SPECIFICATION REFERENCE NBS PLUS:
AG-20-66-305 Precast concrete interlocking blocks Dry Crib Walls, gabions and other gravity retaining walls – 3.10 DRYSTACK INTERLOCKING MASONRY
STOCK INFORMATION

<table>
<thead>
<tr>
<th>Product type</th>
<th>Length (mm)</th>
<th>Depth (mm)</th>
<th>Height (mm)</th>
<th>Is in Stock</th>
<th>Available Colour(s)</th>
<th>per pack</th>
<th>Unit weight (kg)</th>
<th>Pcs per pack</th>
<th>Pcs per unit lorry</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOCK</td>
<td>435</td>
<td>200</td>
<td>150</td>
<td>Yes</td>
<td>MD / FD</td>
<td>3.5</td>
<td>44</td>
<td>1.3</td>
<td>10</td>
</tr>
<tr>
<td>CORNER BLOCK</td>
<td>435</td>
<td>218</td>
<td>150</td>
<td>Yes</td>
<td>MD / FD</td>
<td>N / A</td>
<td>4.6</td>
<td>1.44</td>
<td>10</td>
</tr>
<tr>
<td>SHORTCUT CAP</td>
<td>200</td>
<td>75</td>
<td>75</td>
<td>No</td>
<td>MD / FD</td>
<td>N / A</td>
<td>120</td>
<td>1.256</td>
<td>10</td>
</tr>
</tbody>
</table>

* The ShortCut cap ‘short side’ 175mm in length.

INSTALLATION DATA

<table>
<thead>
<tr>
<th>Model</th>
<th>Set back / Face angle</th>
<th>Minimum inside radius (to back of block on bottom course)</th>
<th>Minimum outside radius (to back of block on bottom course)</th>
<th>Tolerances on all dimensions (m)</th>
<th>Compressive strength (N/mm²)</th>
<th>Face finish</th>
<th>Face coverage</th>
<th>no. per m² / lm</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOCK</td>
<td>10.6°</td>
<td>2.4m</td>
<td>1.2m</td>
<td>±2mm</td>
<td>24</td>
<td>Stone cut</td>
<td>stretcher</td>
<td>15.36</td>
</tr>
<tr>
<td>CORNER BLOCK</td>
<td>N / A</td>
<td>N / A</td>
<td>N / A</td>
<td>±2mm</td>
<td>24</td>
<td>Straight cut</td>
<td>N / A</td>
<td>N / A</td>
</tr>
<tr>
<td>SHORTCUT CAP</td>
<td>N / A</td>
<td>N / A</td>
<td>N / A</td>
<td>±2mm</td>
<td>N / A</td>
<td>Straight cut</td>
<td>N / A</td>
<td>5.4</td>
</tr>
</tbody>
</table>

MANUFACTURING

Anchor segmental retaining wall blocks are manufactured from locally sourced, high grade aggregates. Using the latest computerised mixing systems ensures colour and strength consistency. The ‘rough hewn’ weathered, textured finish of the Bayfield® range is produced using a computer-controlled manufacturing process. POM: Made at our Fivemiletown production plant.

CERTIFICATION

- ISO 14001: Environmental Management.
- Download our Declaration of Performance (DoP) data at www.ag.uk.com/cemarking

SPECIFICATION REFERENCE: NBS PLUS:

- 4G-25-44/250: Precast concrete interlocking blocks Dry. Crib walls, gabions and other gravity retaining walls – 310 DRYSTACK INTERLOCKING MASONRY

SUSTAINABILITY

- **Energy Use:** 100% renewable.
- **Water Used:** 100% rainwater harvesting.
- **Recyclable:** 100% of this product can be recycled.
- **Manufacturing:** Produced in the UK from locally sourced materials.
- **Non-Primary materials:** Not greater than 70% non-primary.
- **Waste Wood + Plastic:** 100% recycled.
- **Carbon Footprint:** 62.7 kg CO₂ / m².
- **Carbon Reduction:** 5.5 kg CO₂ / m².

BREEAM

Wall Types
Gravity Wall
Corner Details
Curve Details
Handrails + Barriers
Small Wall Inspiration
A geosynthetic-reinforced wall needs to be designed by a qualified engineer. With reinforced retaining walls there are (theoretically) no height limitations, and they are used in taller applications. It requires more work area behind the structure. The block of soil is stabilised by introducing reinforcement layers into the soil mass behind the facing units. This larger the stabilised soil mass, the more soil can be retained or held back. The geosynthetic reinforcement in the soil extends past the theoretical failure plane and serves to create a large rectangular mass of block and reinforced soil, restraining the retained soil.

SYSTEM B

Anchorplex™

The Anchorplex™ retaining wall system offers a unique solution to problematic wall construction sites. It is a retaining wall built with Anchor products and self-compacting structural backfill specified by a qualified professional, backed up with all of the calculations required to meet the needs of the most challenging sites.

In combination with an Anchor block, the structural backfill attaches itself to the wall facing effectively increasing the depth and increasing the mass of the facing. The structural backfill acts as the required drainage zone. Using this system of structural backfill eliminates the need to construct a stabilised earth zone behind the wall facing. This method of construction also requires substantially less excavation than is necessary with grid-reinforced wall systems. Because of these efficiencies and the ease of design, Anchorplex™ walls have become extremely popular with contractors and designers worldwide.

Anchorplex™ Applications

- **Reinforced Walls Up To 3 Metres**
 Anchorplex™ construction is often a more cost-effective solution than building with geogrid reinforcement in walls up to about 3 metres tall.

- **Limited Room to Excavate**
 It is often possible to build an Anchorplex™ wall in situations where traditional geogrid reinforcement is not an option because of boundary lines, rock outcroppings or other obstructions that limit the amount of excavation that can be done.

- **Competing with Machine-Placed ‘Big Blocks’**
 For wall heights less than 11 feet, Anchorplex™ walls are almost always more economical than machine-placed ‘big block’ walls — and are always better-looking structures.

Example of an Anchorplex™ wall system.

Anchorplex™ Applications

- **Reinforced Walls Up To 3 Metres**
 Anchorplex™ construction is often a more cost-effective solution than building with geogrid reinforcement in walls up to about 3 metres tall.

- **Limited Room to Excavate**
 It is often possible to build an Anchorplex™ wall in situations where traditional geogrid reinforcement is not an option because of boundary lines, rock outcroppings or other obstructions that limit the amount of excavation that can be done.

- **Competing with Machine-Placed ‘Big Blocks’**
 For wall heights less than 11 feet, Anchorplex™ walls are almost always more economical than machine-placed ‘big block’ walls — and are always better-looking structures.

Example of an Anchorplex™ wall system.

Anchorplex™ Applications

- **Reinforced Walls Up To 3 Metres**
 Anchorplex™ construction is often a more cost-effective solution than building with geogrid reinforcement in walls up to about 3 metres tall.

- **Limited Room to Excavate**
 It is often possible to build an Anchorplex™ wall in situations where traditional geogrid reinforcement is not an option because of boundary lines, rock outcroppings or other obstructions that limit the amount of excavation that can be done.

- **Competing with Machine-Placed ‘Big Blocks’**
 For wall heights less than 11 feet, Anchorplex™ walls are almost always more economical than machine-placed ‘big block’ walls — and are always better-looking structures.

Example of an Anchorplex™ wall system.
A Unique Mechanical Connection

Unlike other segmental retaining wall systems that rely on gravity and frictional forces to connect block and reinforcement materials, the Landmark® system features a true mechanical connection of the reinforcement material to the block. This mechanical connection is achieved by a lock bar, made from an engineered polymer, that fits snugly into a channel formed in the block and secures the reinforcement product.

Connection capacity tests performed on the Landmark® system in combination with a range of reinforcement product types prove that the system’s mechanical connection maintains a firm grip on reinforcement materials. Lateral loads applied to the back of a segmental retaining wall system place the reinforcement in tension. Tension causes the lock bar to mechanically secure the reinforcement product to the unit. Increased tension in the reinforcement causes an increase in the securing efficiency of this true mechanical connection system.

Lateral loads applied to the back of a segmental retaining wall system place the reinforcement in tension. Tension causes the lock bar to mechanically secure the reinforcement product to the unit. Increased tension in the reinforcement causes an increase in the securing efficiency of this true mechanical connection system.

Tenacious Connection Capacity

While system connection strength controls the design of most segmental retaining wall systems on the market today, the Landmark® system changes the status quo. With this system, the lock bar mechanically secures the soil reinforcement products to the Landmark® units. A carefully engineered channel accommodates the specific shape of the lock bar and a range of reinforcement product types.

Connection capacity tests performed on the Landmark® system in combination with a range of reinforcement products prove that the system’s mechanical connection maintains a firm grip on reinforcement materials. Lateral loads applied to the back of a segmental retaining wall system place the reinforcement in tension. Tension causes the lock bar to mechanically secure the reinforcement product to the unit. Increased tension in the reinforcement causes an increase in the securing efficiency of this true mechanical connection system.

INSTALLING A GRAVITY WALL SYSTEM

Setting out the wall and excavation

Diagram 1

- Mark out the wall placement. Verify the locations with the client and engineer if required or appropriate.
- Mark out the location of the excavation trench so that, when dug, the wall blocks will run centrally down the middle of the trench with equal spacing between the front and back of the blocks to the front and back of the trench.
- For engineered walls, make the excavation 600mm from front to back and 350mm deep, unless design assistance has specified this differently.
- Firmly compact the soil in the base of the trench, using a vibrating plate compactor before installing the levelling pad.

Levelling Pad (Footing)

Diagram 2

- An aggregate levelling pad is made of a good compactible base material – eg. MOT Type 1, 20 - 40mm aggregate with fines, crusher run or similar.
- The pad must be 150mm deep (after compaction) and must extend the full width of the excavation trench.
- Fully compact the aggregate, using a vibrating plate compactor, making sure it is level front-to-back and side-to-side.
- If the ground levels along the wall length slope by more than 200mm, the levelling pad must be stepped up to match the slope of the ground.

Base Course

Diagram 3

- The most important step in the construction process.
- Always randomly select and mix blocks from a minimum of three packs to help achieve a balanced colour blend.
- Begin laying blocks at the lowest elevation of the wall.
- The base course blocks must be fully bedded and lie completely flat on the levelling pad.
INSTALLING A GRAVITY WALL SYSTEM

- Lay the first block, leveling it front to back and side to side.
- Place the blocks side by side, flush against each other, ensuring the blocks are in full contact with the leveling pad. Ensure blocks are level in both directions with a spirit level.
- Use a string line along the back of the blocks to align the wall units, or evenly align the back of the units (not the front) to form smooth and consistent curves.
- If the wall site is on an incline, do not slope the blocks – step them up so they remain consistently level.

Construction of the next course

Diagrams 4 + 5
- Always randomly choose and mix blocks from a minimum of three packs to help achieve a balanced colour blend.
- Clean any debris off the top of the blocks.
- Place the second course of blocks on top of the base course. Maintain a running bond by placing the units in a staggered relationship to the course beneath.
- Push the block forward towards the front of the wall to ensure the locator cam or rear lip is tightly located against the block below.
- Blackfill with drainage aggregate directly behind the block, adding 200mm at a time.
- The drainage aggregate should be 15 - 20mm clean or ‘no fines’ aggregate and should extend at least 300mm back from the rear of the wall.
- Fill all voids between each wall unit with drainage aggregate. Block cores must also be fully filled.

Drainage Design

Diagrams 6 + 7
- Each project is unique. The ground levels on the site will determine at what level to install the perforated drainage pipe, but generally the drainage pipe is positioned as low as possible behind the wall so water drains down, out and away from the wall into a storm drain, or to an area lower than the wall.
- Place the perforated drainage pipe in the middle point of the 300mm drainage zone.
- You may need to place and backfill several courses to achieve the proper drainage level. For best results, consider covering the perforated drainage pipe with a geotextile sock to act as a filter.

Compaction

Diagram 8
- Shovel suitable compactible backfill material behind the drainage aggregate and compact the fill (not the drainage aggregate) with a hand-operated compactor.
- Make sure the aggregate is level with or slightly below the top of the base course.
- Place soil in front of the base course and fully compact. The base course must be buried.
- Continue to fill and compact the backfill as each course is constructed.
- Self-propelled compaction equipment should not be used within 1.2 metres of the wall units.

Reinforcement

For walls above 1000mm high
- Geosynthetic reinforcement is generally required for walls taller than 1000mm.
- For walls taller than 1000mm a suitably qualified engineer must be consulted for design assistance. Contact AG for names and contact details of engineers in your area.

Finish Levels + Surface Drainage

- Protect the wall with a finished ground level at the top and bottom.
- To ensure proper water drainage away from the wall, use a minimum of 200mm of soil with low permeability. This will minimise water seeping into the soil and drainage aggregate behind the wall.

Site Cleaning + Restoration

- Brush off the wall and clean up any debris from the construction process.
- Following these best practices for construction will ensure the successful construction of an Anchor Wall.
To install reinforcement on an inside 90° corner, begin by checking the wall plan to determine reinforcement lengths and elevations. Cut reinforcement to the lengths shown in the wall plan, paying attention to the reinforcement strength direction.

Next, determine the proper placement of the reinforcement by dividing the proposed height of the wall by four. This represents the distance that reinforcement must extend beyond the front of the adjoining wall. Measure this distance from the front of the adjoining wall and begin the grid placement here.

Example: If overall wall height is 1.2m, the reinforcement extension would be 300mm. Make sure the grid is placed 25mm back from the face of the block below and runs along the back of the adjoining wall.

To create an inside 90° corner, begin by placing a block at the corner. Then lay a second block perpendicular to the first and continue laying out the rest of the base course working from the corner out.

On the second course, place all blocks in a running bond along one side of the corner. Once the second course of one wall is established, begin the second course of the adjacent wall. Several blocks away from the corner, position full blocks in a running bond. Continue the running bond back towards the corner, until the gap becomes less than a full unit. A split unit* will then be required to maintain running bond away from the corner. Measure the length of the unit required and split to fit.

Block placement in the corner must alternate in direction with each succeeding course. The locating cam of the block being overlaid within the corner should be removed manually using a hammer and chisel, and these units should be bonded in place using a concrete adhesive.

*Cutting or splitting blocks – use a hydraulic or mechanical splitter, or split manually by using a hammer and chisel to score the block on all sides. A circular saw or masonry cutter may also be used.
CORNER DETAILS

Outside Corners

Diagram 1: Base Course

To build an outside 90° corner, begin by placing a corner base course working from the corner block outwards.

Diagrams 2 + 3: Second course

Lay a corner block perpendicular to the one below and fix the block in place with concrete adhesive. Two or three blocks away from the corner lay full blocks, maintaining running bond with the course below. Lay blocks back towards the corner block, leaving space for the final split units required to complete the course.

Use split units immediately adjacent to the corner block to complete the course. Continue to alternate the corner unit orientation with each course and always use a concrete adhesive on all corner blocks and split units. Use split units* as necessary to maintain running bond.

*Cutting or splitting blocks – use a hydraulic or mechanical splitter, or split manually by using a hammer and chisel to score the block on all sides. A circular masonry saw may also be used.

Outside Corners — Reinforcement

Diagram 4: First Course with Reinforcement

Begin by checking the wall plans from the engineer to determine reinforcement lengths and elevations. At each reinforced course, lay a section of reinforcement near the corner wall, ensuring that it is placed 25mm back from the wall face in one direction, whilst running along the back, but not overlapping the adjacent wall. Ensuring no grid overlap occurs, continue the grid reinforcement along both legs of the wall, to the reinforcement lengths specified. At this stage, there will still be several blocks which are not in contact with any reinforcement. Grid must not be directly overlaid, so this reinforcement must be incorporated at the next block level up. Lay the next course of blocks and, before backfiling, mark the portion of the wall without reinforcement. This is important, because once the backfill is in place this cannot be seen.

Diagram 5: First Course with Reinforcement

Back fill and compact behind the course of blocks. Cut an additional length of grid to correspond to the marked section of blocks. This grid should be cut to the length shown in the drawings and laid so that it is placed 25mm back from the wall face, whilst running along the back, but not overlapping the adjacent wall. Repeat this procedure at each reinforced layer within the wall, alternating the alignment of the additional layer of reinforcement at each elevation.

Inside Curves

Minimum Radius

When building an inside curve, the minimum radius allowed (when measured to the front face of the block) for an Anchor Vertica wall is 2.08m. Check the wall plan to ensure the radius of the base courses of any inside curves are greater than 2.08m.

Diagram 1: Base Course

Begin by driving a stake into the ground at the desired centre of the curve. Attach a string and rotate it in a circle around the stake to mark the radius in the levelling pad (footing or base). Align each block face with the radius curve and ensure level placement from side to side and front to back.

Diagram 2: Additional Course

On each course, the back of the locating cam of each block must be in contact with the units below to ensure structural stability. The setback of the block will cause the radius of each course to gradually increase and eventually affect the running bond of the wall. To maintain proper running bond, use split units* as needed. Once a split unit is cut to size, bond in place with a concrete adhesive.

Diagram 3: First Course with Reinforcement

Cut reinforcement to the lengths specified in the wall plan. Lay segments of reinforcement within 25mm of the face of the wall, making sure that the length of each section is perpendicular to the wall face. Place the next course of blocks, marking the backs of blocks to identify the middle of un-reinforced areas. Backfill and compact.

Diagram 4: Next Course

On the next course, centre subsequent sections of the reinforcement on the marked blocks to ensure full reinforcement coverage. This step is important because when this course is backfilled, it is impossible to locate the unreinforced areas. Repeat this procedure throughout the construction of the radius curve when reinforcement is required.

*Cutting or splitting blocks – use a hydraulic or mechanical splitter, or split manually by using a hammer and chisel to score the block on all sides. A circular masonry saw may also be used.

Inside Curves — Reinforcement

Retaining walls are designed assuming 100% coverage of the reinforcement.

When building a curve the reinforcement will have gaps. To ensure 100% coverage, additional lengths of reinforcement are used to fill those gaps on the next course of blocks. Never overlap the grid on one course to avoid slippage.

Diagram 4: Next Course

On the next course, centre subsequent sections of the reinforcement on the marked blocks to ensure full reinforcement coverage. This step is important because when this course is backfilled, it is impossible to locate the unreinforced areas. Repeat this procedure throughout the construction of the radius curve when reinforcement is required.
Outside Curves

Minimum Radius

The radius of the top course of an Anchor wall will always be less than the radius of the base course because of the batter of the wall.

For Anchor walls built with outside curves the minimum radius of the top course of blocks must not be less than 1.82m.

The table below shows the minimum allowed radius of the base course for various wall heights. For each wall height, provided that the actual base course radius is greater than the minimum shown, the radius of the top course will always be greater than the allowed minimum of 1.82m.

<table>
<thead>
<tr>
<th>Wall Height (m)</th>
<th>Minimum Allowed Radius of Base Course to Back of Block (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.40</td>
<td>2.12</td>
</tr>
<tr>
<td>2.20</td>
<td>2.10</td>
</tr>
<tr>
<td>2.00</td>
<td>2.07</td>
</tr>
<tr>
<td>1.80</td>
<td>2.00</td>
</tr>
<tr>
<td>1.60</td>
<td>2.02</td>
</tr>
<tr>
<td>1.40</td>
<td>2.00</td>
</tr>
<tr>
<td>1.20</td>
<td>1.97</td>
</tr>
<tr>
<td>1.00</td>
<td>1.90</td>
</tr>
<tr>
<td>0.80</td>
<td>1.83</td>
</tr>
<tr>
<td>0.60</td>
<td>1.50</td>
</tr>
<tr>
<td>0.40</td>
<td>1.37</td>
</tr>
<tr>
<td>0.20</td>
<td>1.85</td>
</tr>
</tbody>
</table>

Example: A 1.60m wall is being built with an outside curve. The radius of the base course is 2.15m. The minimum allowed radius of a base course for a 1.60m high wall is 2.02m, so the curve can ‘just’ be built successfully.

Diagram 1: Base Course

Drive a stake into the ground at the desired centre of the curve. Attach a string and rotate it in a circle around the stake to mark the radius in the levelling pad (footing or base). Align the back of the block (not the front) with the radius curve and ensure level placement from side to side and front to back.

Diagram 2: Additional Course

On each course, the back of the locating cam of each block must be in contact with the units below to ensure structural stability. The setback of the block will cause the radius of each course to gradually decrease and eventually affect the running bond of the wall. To maintain proper running bond, use split units* as needed. Once a split unit is cut to size, bond in place with a concrete adhesive.

*Cutting or splitting blocks – use a hydraulic or mechanical splitter, or split manually by using a hammer and chisel to score the block on all sides. A circular saw may also be used.

Diagram 3: Additional Courses

Outside Curves – Reinforcement

Diagram 1: Reinforcement

Retaining walls are designed assuming 100% coverage of the reinforcement. When building a curve the reinforcement will have gaps. To ensure 100% coverage, additional lengths of reinforcement are used to fill those gaps on the next course of blocks. Do not overlap the grid on one course to avoid slippage.

Diagram 2: First Course with Reinforcement

Cut reinforcement to the lengths specified in the wall plan. Lay sections of the reinforcement within 25mm of the face of the wall with the strength direction perpendicular to the wall face. Avoid overlapping the reinforcement by separating each section.

Diagram 3: Next Course

Place the next course of blocks, marking the backs of blocks to identify unreinforced areas. This step is important because when this course is backfilled, it is impossible to locate the unreinforced areas. Use the marked blocks as a guide, placing subsequent sections of reinforcement to overlap the gaps left on the previous course. This will ensure total reinforcement coverage. Repeat this procedure throughout the construction of the radius curve whenever reinforcement is required.
AG have been producing Anchor walling blocks since 1999. Over the years we have worked successfully with our customers on a large number of schemes that have used a wide variety of handrails, fences and barriers with our retaining wall systems.

For a design specification on corners and fence detailing on any Anchor walling system, please contact us directly.

HANDRAILS + BARRIERS

Incorporating handrails and barriers into your design

1. Anchor Vertica® Canelletto, Derry/L’Derry
2. Anchor Vertica® Basalt, Craigavon
3. Anchor Vertica®, Belfast
4. Anchor Vertica®, Sheffield
5. Anchor Vertica® Basalt, Armagh
6. Anchor Vertica® Basalt, Craigavon
The versatility of Anchor systems means that they’re not just for 200m long, 15m high retaining walls. They can be used in much smaller areas to easily create attractive landscaping features such as raised planters, flower beds, decking areas, ponds and water features, steps, tree rings and rockeries.

With the crisp finish and overall visual appeal that Anchor blocks provide, these features can add true value to any project.
As the retaining walls are all mortarless systems, caps should be applied using a concrete adhesive, eliminating the need for mortar and the associated risk of mortar stains.

General Wear
Clean using a stiff brush, mild detergent and water from a low pressure hose.

Remedial Work
Any type of remedial work should be tested on a small area which is not easily seen so that it can be assessed before carrying out work on a large area. Remedial cleaning procedures may affect the final appearance of the masonry. For your safety, make sure you use gloves, goggles, safety helmet, etc.

Power Washing
Using a power hose is not recommended as it may damage the surface of the product.

Graffiti
It’s best to take preventative measures if graffiti is likely to occur. Anti-graffiti systems are available. These consist of a protective sacrificial coating on the masonry which acts as a barrier against the adhesion of the graffiti.

Efflorescence
Efflorescence (also known as ‘white bloom’) is the milky white staining that sometimes appears early on in all quality products with a high cement content. A temporary condition which is purely cosmetic and requires no treatment, it is hard to predict how long it may last due to varying factors such as climate conditions, location and aspect. (In some cases it can take around a year to disappear.)

We hope this does not detract from your enjoyment of our products and would like to stress that AG cannot be held responsible for this natural phenomenon. The best course of action is to let nature take its course.

Notes
Colours + Finishes
The colours shown in this literature are as accurate as the printing process will allow. Whilst every effort is made to match colours and represent textures, we recommend that colours and textures are chosen from actual samples of the product.

Manufacture
All products are manufactured from natural materials and although we strive to provide consistency of colour, variation may occur in the manufacturing process. It is for this reason that we recommend that products are selected from at least three bales, within each delivery. This will eliminate ‘banding’.

Capping Blocks
AG have introduced a new ShortCut™ Cap to their product lines. Please note: some of the photography shown still includes the previous capping block. Adhesive is required for fixing caps and partial units. For advice on Capping Blocks please contact AG. NB: The recommended adhesive for fixing caps and partial units is Montagefix, which is available from AG.

General
All information contained in this brochure is correct at the time of going to print. We recommend that you contact our sales staff for further information at the design stage of your project for the most up-to-date information.

AG reserves the right to discontinue products if necessary.

Health + Safety
Care must be taken when handling / working with individual products to avoid risk of injury from manual handling, sharp edges, abrasive texture and dust fragments. Inhalation of any dust produced from aggregates must be avoided. Protective clothing must be worn and is activity dependent. Further information may be obtained by contacting AG or the HSE/HPA.

AG recognise that the activities of our organisation could potentially have a significant impact on the environment.

In order to minimise this impact, we take a proactive rather than reactive stance on environmental issues. In recognition of these efforts, we have won a number of environmental awards.

Certification
BS EN ISO 14001 is a comprehensive tool that provides all industry with a way of controlling environmental impacts. AG were awarded certification for a multi-site management system (across eight NI manufacturing sites and three quarries) that documents environmental impacts including: energy waste, production waste and carbon emissions.

OHSAS 18001 CERTIFICATION
OHSAS 18001:2007 is an international occupational health and safety management system that provides a framework to control health and safety risks and improve the health and safety of employees.

AG was awarded certification because of the high standards of safety awareness across all of its operations.

Design professionals can trust that AG will always apply best practice in terms of health and safety.

Sustainability
AG is one of the most innovative and progressive concrete manufacturing companies in the UK and Ireland and has invested significantly in modern technology.

Good Practice Commitments
- Water management and recycling.
- Recycling and reuse of aggregates.
- Dust suppression in operation for plant movement, production processes including crushing and screening.
- Developing markets for by-products.
- Implementation of waste management systems in place across all locations.
- Energy conservation projects.
- Site restoration and reafforestation.
- Landscaping and improved visual amenity.
- An environmental operative is in place at all locations. This role encompasses all aspects of the environment, ensuring that the company is adhering to our legislative requirements.

Corporate Social Responsibility
A comprehensive social responsibility policy illustrates AG’s commitment to operating to the highest standards in every aspect of its business. We aim to run our business ethically, achieving environmental stewardship to industry best practice, striving to manage activities in a safe manner, protecting the health and safety of everyone involved and encouraging social inclusion in the communities in which we operate.

Restoration
Waste material that cannot be recycled back into the production process is used as an aid to restoration at our sites. It helps to re-landscape and restore parts of our sites no longer used for production purposes.

Environmental
AG have designated ‘Care of the Environment’ as an essential part of the business strategy. We would seek to support the government’s environmental aims by adopting, where possible, Best Available Techniques Not Entailing Excessive Cost (BATNEEC).

We will take into account environmental issues when designing management systems, organisational structures and communication systems.
Design Service

Anchor retaining wall systems are manufactured in Ireland by AG and under license from Anchor Wall Systems. This combined expertise in block design, block manufacture and engineering design offers a unique and unbeatable product range, quality and service available throughout the UK and Ireland.

Whether it be a fully indemnified design* specific to your project, or rapid technical advice, AG can offer complete engineering support through their in-house team of Chartered Civil Engineers.

How To Specify

Full technical specifications for all retaining walls products are available to download from our website. BIM objects are also available upon request, please contact us for more information.

Questions + Advice

We’re here to help – everything from pre-sales specification advice through to construction and engineering help is just a phone call away.

You can reach our segmental retaining walls specialists on +44 (0) 28 8778 8112 in Ireland or +44 (0) 121 747 0202 in Great Britain – or by email at specifications@ag.uk.com.

**AG is a member of the RIBA and RIAI CPD Providers Network and in-house presentations can be undertaken, by prior arrangement.

AG is a member of the NBS Plus Service. See each product page for NBS specifications.

*A fee may apply for fully indemnified designs.
SPECIFICATION GUIDE

Great Britain
4 Marlin Office Village
1250 Chester Road
Castle Vale
Birmingham
B35 7AZ
T +44 (0) 121 747 0202

Ireland
64 Old Moy Road
Dungannon
BT71 6PU
T 028 8778 8112
E specifications@ag.uk.com